Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nat Microbiol ; 8(12): 2326-2337, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38030907

RESUMO

Dimethylsulfoxonium propionate (DMSOP) is a recently identified and abundant marine organosulfur compound with roles in oxidative stress protection, global carbon and sulfur cycling and, as shown here, potentially in osmotolerance. Microbial DMSOP cleavage yields dimethyl sulfoxide, a ubiquitous marine metabolite, and acrylate, but the enzymes responsible, and their environmental importance, were unknown. Here we report DMSOP cleavage mechanisms in diverse heterotrophic bacteria, fungi and phototrophic algae not previously known to have this activity, and highlight the unappreciated importance of this process in marine sediment environments. These diverse organisms, including Roseobacter, SAR11 bacteria and Emiliania huxleyi, utilized their dimethylsulfoniopropionate lyase 'Ddd' or 'Alma' enzymes to cleave DMSOP via similar catalytic mechanisms to those for dimethylsulfoniopropionate. Given the annual teragram predictions for DMSOP production and its prevalence in marine sediments, our results highlight that DMSOP cleavage is likely a globally significant process influencing carbon and sulfur fluxes and ecological interactions.


Assuntos
Propionatos , Roseobacter , Sulfetos/metabolismo , Enxofre/metabolismo , Carbono
2.
J Am Chem Soc ; 145(30): 16391-16397, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37487192

RESUMO

We have combined saturation transfer difference NMR (STD NMR) with chemical shift imaging (CSI) and controlled concentration gradients of small molecule ligands to develop imaging STD NMR, a new tool for the assessment of protein-ligand interactions. Our methodology allows the determination of protein-ligand dissociation constants (KD) and assessment of the binding specificity in a single NMR tube, avoiding time-consuming titrations. We demonstrate the formation of suitable and reproducible concentration gradients of ligand along the vertical axis of the tube, against homogeneous protein concentration, and present a CSI pulse sequence for the acquisition of STD NMR experiments at different positions along the sample tube. Compared to the conventional methodology in which the [ligand]/[protein] ratio is increased manually, we can perform STD NMR experiments at a greater number of ratios and construct binding epitopes in a fraction (∼20%) of the experimental time. Second, imaging STD NMR also allows us to screen for non-specific binders, by monitoring any variation of the binding epitope map at increasing [ligand]/[protein] ratios. Hence, the proposed method does carry the potential to speed up and smooth out the drug discovery process.


Assuntos
Imageamento por Ressonância Magnética , Proteínas , Sítios de Ligação , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Proteínas/química , Ligação Proteica , Epitopos/química
3.
J Colloid Interface Sci ; 638: 135-148, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36736115

RESUMO

Despite extensive use of micelles in materials and colloidal science, their supramolecular organization as well as host-guest interactions within these dynamic assemblies are poorly understood. Small guest molecules in the presence of micelles undergo constant exchange between a micellar aggregate and the surrounding solution, posing a considerable challenge for their molecular level characterisation. In this work we reveal the interaction maps between small guest molecules and surfactants forming micelles via novel applications of NMR techniques supported with state-of-the-art analytical methods used in colloidal science. Model micelles composed of structurally distinct surfactants (block non-ionic polymer Pluronic® F-127, non-ionic surfactant Tween 20 or Tween 80, and ionic surfactant sodium lauryl sulphate, SLS) were selected and loaded with model small molecules of biological relevance (i.e. the drugs fluconazole, FLU or indomethacin, IMC) known to have different partition coefficients. Molecular level organization of FLU or IMC within hydrophilic and hydrophobic domains of micellar aggregates was established using the combination of NMR methods (1D 1H NMR, 1D 19F NMR, 2D 1H-1H NOESY and 2D 1H-19F HOESY, and the multifrequency-STD NMR) and corroborated with molecular dynamics (MD) simulations. This is the first application of multifrequency-STD NMR to colloidal systems, enabling us to elucidate intricately detailed patterns of drug/micelle interactions in a single NMR experiment within minutes. Importantly, our results indicate that flexible surfactants, such as block copolymers and polysorbates, form micellar aggregates with a surface composed of both hydrophilic and hydrophobic domains and do not follow the classical core-shell model of the micelle. We propose that the magnitude of changes in 1H chemical shifts corroborated with interaction maps obtained from DEEP-STD NMR and 2D NMR experiments can be used as an indicator of the strength of the guest-surfactant interactions. This NMR toolbox can be adopted for the analysis of broad range of colloidal host-guest systems from soft materials to biological systems.


Assuntos
Micelas , Tensoativos , Tensoativos/química , Dodecilsulfato de Sódio/química , Polissorbatos/química , Espectroscopia de Ressonância Magnética
4.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36015178

RESUMO

In recent years, Saturation Transfer Difference NMR (STD NMR) has been proven to be a powerful and versatile ligand-based NMR technique to elucidate crucial aspects in the investigation of protein-ligand complexes. Novel STD NMR approaches relying on "multi-frequency" irradiation have enabled us to even elucidate specific ligand-amino acid interactions and explore the binding of fragments in previously unknown binding subsites. Exploring multi-subsite protein binding pockets is especially important in Fragment Based Drug Discovery (FBDD) to design leads of increased specificity and efficacy. We hereby propose a novel multi-frequency STD NMR approach based on direct irradiation of one of the ligands in a multi-ligand binding process, to probe the vicinity and explore the relative orientation of fragments in adjacent binding sub-sites, which we called Inter-Ligand STD NMR (IL-STD NMR). We proved its applicability on (i) a standard protein-ligand system commonly used for ligand-observed NMR benchmarking: Naproxen as bound to Bovine Serum Albumin, and (ii) the biologically relevant system of Cholera Toxin Subunit B and two inhibitors adjacently bound within the GM1 binding site. Relative to Inter-Ligand NOE (ILOE), the current state-of-the-art methodology to probe relative orientations of adjacent ligands, IL-STD NMR requires about one tenth of the experimental time and protein consumption, making it a competitive methodology with the potential to be applied in the pharmaceutical industries.

5.
Cell Rep ; 38(13): 110611, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35354052

RESUMO

The HIV-1 Envelope glycoprotein (Env) is the sole target for broadly neutralizing antibodies (bnAbs). Env is heavily glycosylated with host-derived N-glycans, and many bnAbs bind to, or are dependent upon, Env glycans for neutralization. Although glycan-binding bnAbs are frequently detected in HIV-infected individuals, attempts to elicit them have been unsuccessful because of the poor immunogenicity of Env N-glycans. Here, we report cross-reactivity of glycan-binding bnAbs with self- and non-self N-glycans and glycoprotein antigens from different life-stages of Schistosoma mansoni. Using the IAVI Protocol C HIV infection cohort, we examine the relationship between S. mansoni seropositivity and development of bnAbs targeting glycan-dependent epitopes. We show that the unmutated common ancestor of the N332/V3-specific bnAb lineage PCDN76, isolated from an HIV-infected donor with S. mansoni seropositivity, binds to S. mansoni cercariae while lacking reactivity to gp120. Overall, these results present a strategy for elicitation of glycan-reactive bnAbs which could be exploited in HIV-1 vaccine development.


Assuntos
Infecções por HIV , HIV-1 , Parasitos , Animais , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV , Humanos , Parasitos/metabolismo , Polissacarídeos/metabolismo
6.
PLoS Biol ; 19(12): e3001498, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34936658

RESUMO

The human gut symbiont Ruminococcus gnavus displays strain-specific repertoires of glycoside hydrolases (GHs) contributing to its spatial location in the gut. Sequence similarity network analysis identified strain-specific differences in blood-group endo-ß-1,4-galactosidase belonging to the GH98 family. We determined the substrate and linkage specificities of GH98 from R. gnavus ATCC 29149, RgGH98, against a range of defined oligosaccharides and glycoconjugates including mucin. We showed by HPAEC-PAD and LC-FD-MS/MS that RgGH98 is specific for blood group A tetrasaccharide type II (BgA II). Isothermal titration calorimetry (ITC) and saturation transfer difference (STD) NMR confirmed RgGH98 affinity for blood group A over blood group B and H antigens. The molecular basis of RgGH98 strict specificity was further investigated using a combination of glycan microarrays, site-directed mutagenesis, and X-ray crystallography. The crystal structures of RgGH98 in complex with BgA trisaccharide (BgAtri) and of RgGH98 E411A with BgA II revealed a dedicated hydrogen network of residues, which were shown by site-directed mutagenesis to be critical to the recognition of the BgA epitope. We demonstrated experimentally that RgGH98 is part of an operon of 10 genes that is overexpresssed in vitro when R. gnavus ATCC 29149 is grown on mucin as sole carbon source as shown by RNAseq analysis and RT-qPCR confirmed RgGH98 expression on BgA II growth. Using MALDI-ToF MS, we showed that RgGH98 releases BgAtri from mucin and that pretreatment of mucin with RgGH98 confered R. gnavus E1 the ability to grow, by enabling the E1 strain to metabolise BgAtri and access the underlying mucin glycan chain. These data further support that the GH repertoire of R. gnavus strains enable them to colonise different nutritional niches in the human gut and has potential applications in diagnostic and therapeutics against infection.


Assuntos
Clostridiales/metabolismo , Mucina-1/metabolismo , Sistema ABO de Grupos Sanguíneos/imunologia , Antígenos de Grupos Sanguíneos/imunologia , Clostridiales/genética , Clostridiales/fisiologia , Microbioma Gastrointestinal , Trato Gastrointestinal , Glicosídeo Hidrolases/metabolismo , Humanos , Mucinas/metabolismo , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Ruminococcus/genética , Ruminococcus/metabolismo , Especificidade por Substrato , Espectrometria de Massas em Tandem/métodos
7.
Front Mol Biosci ; 8: 727980, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604306

RESUMO

Biofilms confine bacterial cells within self-produced matrices, offering advantages such as protection from antibiotics and entrapment of nutrients. Polysaccharides are major components in these macromolecular assemblies, and their interactions with other chemicals are of high relevance for the benefits provided by the biofilm 3D molecular matrix. NMR is a powerful technique for the study and characterization of the interactions between molecules of biological relevance. In this study, we have applied multifrequency saturation transfer difference (STD) NMR and DOSY NMR approaches to elucidate the interactions between the exopolysaccharide produced by Burkholderia multivorans C1576 (EpolC1576) and the antibiotics kanamycin and ceftadizime. The NMR strategies presented here allowed for an extensive characterization at an atomic level of the mechanisms behind the implication of the EpolC1576 in the recalcitrance phenomena, which is the ability of bacteria in biofilms to survive in the presence of antibiotics. Our results suggest an active role for EpolC1576 in the recalcitrance mechanisms toward kanamycin and ceftadizime, though through two different mechanisms.

8.
Chem Commun (Camb) ; 57(9): 1145-1148, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33411866

RESUMO

The ability to custom-modify cell surface glycans holds great promise for treatment of a variety of diseases. We propose a glycomimetic of l-fucose that markedly inhibits the creation of sLeX by FTVI and FTVII, but has no effect on creation of LeX by FTIX. Our findings thus indicate that selective suppression of sLex display can be achieved, and STD-NMR studies surprisingly reveal that the mimetic does not compete with GDP-fucose at the enzymatic binding site.


Assuntos
Fucose/análogos & derivados , Fucose/farmacologia , Fucosiltransferases/antagonistas & inibidores , Linhagem Celular Tumoral , Fucose/química , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras
9.
Cell Mol Life Sci ; 78(2): 675-693, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32333083

RESUMO

The availability and repartition of fucosylated glycans within the gastrointestinal tract contributes to the adaptation of gut bacteria species to ecological niches. To access this source of nutrients, gut bacteria encode α-L-fucosidases (fucosidases) which catalyze the hydrolysis of terminal α-L-fucosidic linkages. We determined the substrate and linkage specificities of fucosidases from the human gut symbiont Ruminococcus gnavus. Sequence similarity network identified strain-specific fucosidases in R. gnavus ATCC 29149 and E1 strains that were further validated enzymatically against a range of defined oligosaccharides and glycoconjugates. Using a combination of glycan microarrays, mass spectrometry, isothermal titration calorimetry, crystallographic and saturation transfer difference NMR approaches, we identified a fucosidase with the capacity to recognize sialic acid-terminated fucosylated glycans (sialyl Lewis X/A epitopes) and hydrolyze α1-3/4 fucosyl linkages in these substrates without the need to remove sialic acid. Molecular dynamics simulation and docking showed that 3'-Sialyl Lewis X (sLeX) could be accommodated within the binding site of the enzyme. This specificity may contribute to the adaptation of R. gnavus strains to the infant and adult gut and has potential applications in diagnostic glycomic assays for diabetes and certain cancers.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridiales/metabolismo , Microbioma Gastrointestinal , alfa-L-Fucosidase/metabolismo , Proteínas de Bactérias/química , Clostridiales/química , Clostridiales/enzimologia , Trato Gastrointestinal/microbiologia , Glicoconjugados/metabolismo , Humanos , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Especificidade por Substrato , alfa-L-Fucosidase/química
10.
J Biol Chem ; 295(40): 13724-13736, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32669363

RESUMO

The human gut symbiont Ruminococcus gnavus scavenges host-derived N-acetylneuraminic acid (Neu5Ac) from mucins by converting it to 2,7-anhydro-Neu5Ac. We previously showed that 2,7-anhydro-Neu5Ac is transported into R. gnavus ATCC 29149 before being converted back to Neu5Ac for further metabolic processing. However, the molecular mechanism leading to the conversion of 2,7-anhydro-Neu5Ac to Neu5Ac remained elusive. Using 1D and 2D NMR, we elucidated the multistep enzymatic mechanism of the oxidoreductase (RgNanOx) that leads to the reversible conversion of 2,7-anhydro-Neu5Ac to Neu5Ac through formation of a 4-keto-2-deoxy-2,3-dehydro-N-acetylneuraminic acid intermediate and NAD+ regeneration. The crystal structure of RgNanOx in complex with the NAD+ cofactor showed a protein dimer with a Rossman fold. Guided by the RgNanOx structure, we identified catalytic residues by site-directed mutagenesis. Bioinformatics analyses revealed the presence of RgNanOx homologues across Gram-negative and Gram-positive bacterial species and co-occurrence with sialic acid transporters. We showed by electrospray ionization spray MS that the Escherichia coli homologue YjhC displayed activity against 2,7-anhydro-Neu5Ac and that E. coli could catabolize 2,7-anhydro-Neu5Ac. Differential scanning fluorimetry analyses confirmed the binding of YjhC to the substrates 2,7-anhydro-Neu5Ac and Neu5Ac, as well as to co-factors NAD and NADH. Finally, using E. coli mutants and complementation growth assays, we demonstrated that 2,7-anhydro-Neu5Ac catabolism in E. coli depended on YjhC and on the predicted sialic acid transporter YjhB. These results revealed the molecular mechanisms of 2,7-anhydro-Neu5Ac catabolism across bacterial species and a novel sialic acid transport and catabolism pathway in E. coli.


Assuntos
Proteínas de Bactérias/química , Clostridiales/enzimologia , Ácido N-Acetilneuramínico/química , Oxirredutases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clostridiales/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Teste de Complementação Genética , Humanos , Mucinas/química , Mucinas/metabolismo , Ácido N-Acetilneuramínico/genética , Ácido N-Acetilneuramínico/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo
11.
Chemistry ; 26(44): 10024-10034, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32449563

RESUMO

Ligand-based NMR techniques to study protein-ligand interactions are potent tools in drug design. Saturation transfer difference (STD) NMR spectroscopy stands out as one of the most versatile techniques, allowing screening of fragments libraries and providing structural information on binding modes. Recently, it has been shown that a multi-frequency STD NMR approach, differential epitope mapping (DEEP)-STD NMR, can provide additional information on the orientation of small ligands within the binding pocket. Here, the approach is extended to a so-called DEEP-STD NMR fingerprinting technique to explore the binding subsites of cholera toxin subunit B (CTB). To that aim, the synthesis of a set of new ligands is presented, which have been subject to a thorough study of their interactions with CTB by weak affinity chromatography (WAC) and NMR spectroscopy. Remarkably, the combination of DEEP-STD NMR fingerprinting and Hamiltonian replica exchange molecular dynamics has proved to be an excellent approach to explore the geometry, flexibility, and ligand occupancy of multi-subsite binding pockets. In the particular case of CTB, it allowed the existence of a hitherto unknown binding subsite adjacent to the GM1 binding pocket to be revealed, paving the way to the design of novel leads for inhibition of this relevant toxin.


Assuntos
Toxina da Cólera/química , Toxina da Cólera/metabolismo , Gangliosídeo G(M1)/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Sítios de Ligação , Ligantes , Ligação Proteica
12.
Stroke ; 50(8): 2168-2174, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31234756

RESUMO

Background and Purpose- Despite treatment with oral anticoagulants, patients with nonvalvular atrial fibrillation (AF) may experience ischemic cerebrovascular events. The aims of this case-control study in patients with AF were to identify the pathogenesis of and the risk factors for cerebrovascular ischemic events occurring during non-vitamin K antagonist oral anticoagulants (NOACs) therapy for stroke prevention. Methods- Cases were consecutive patients with AF who had acute cerebrovascular ischemic events during NOAC treatment. Controls were consecutive patients with AF who did not have cerebrovascular events during NOACs treatment. Results- Overall, 713 cases (641 ischemic strokes and 72 transient ischemic attacks; median age, 80.0 years; interquartile range, 12; median National Institutes of Health Stroke Scale on admission, 6.0; interquartile range, 10) and 700 controls (median age, 72.0 years; interquartile range, 8) were included in the study. Recurrent stroke was classified as cardioembolic in 455 cases (63.9%) according to the A-S-C-O-D (A, atherosclerosis; S, small vessel disease; C, cardiac pathology; O, other causes; D, dissection) classification. On multivariable analysis, off-label low dose of NOACs (odds ratio [OR], 3.18; 95% CI, 1.95-5.85), atrial enlargement (OR, 6.64; 95% CI, 4.63-9.52), hyperlipidemia (OR, 2.40; 95% CI, 1.83-3.16), and CHA2DS2-VASc score (OR, 1.72 for each point increase; 95% CI, 1.58-1.88) were associated with ischemic events. Among the CHA2DS2-VASc components, age was older and presence of diabetes mellitus, congestive heart failure, and history of stroke or transient ischemic attack more common in patients who had acute cerebrovascular ischemic events. Paroxysmal AF was inversely associated with ischemic events (OR, 0.45; 95% CI, 0.33-0.61). Conclusions- In patients with AF treated with NOACs who had a cerebrovascular event, mostly but not exclusively of cardioembolic pathogenesis, off-label low dose, atrial enlargement, hyperlipidemia, and high CHA2DS2-VASc score were associated with increased risk of cerebrovascular events.


Assuntos
Anticoagulantes/uso terapêutico , Fibrilação Atrial/complicações , Isquemia Encefálica/etiologia , Acidente Vascular Cerebral/prevenção & controle , Administração Oral , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco , Fatores de Risco
13.
Cephalalgia ; 39(10): 1267-1276, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31060368

RESUMO

INTRODUCTION: To describe clinical, neuroimaging, and laboratory features of a large cohort of Italian patients with reversible cerebral vasoconstriction syndrome. METHODS: In the setting of the multicenter Italian Project on Stroke at Young Age (IPSYS), we retrospectively enrolled patients with a diagnosis of definite reversible cerebral vasoconstriction syndrome according to the International Classification of Headache Disorders (ICHD)-3 beta criteria (6.7.3 Headache attributed to reversible cerebral vasoconstriction syndrome, imaging-proven). Clinical manifestations, neuroimaging, treatment, and clinical outcomes were evaluated in all patients. Characteristics of reversible cerebral vasoconstriction syndrome without typical causes ("idiopathic reversible cerebral vasoconstriction syndrome") were compared with those of reversible cerebral vasoconstriction syndrome related to putative causative factors ("secondary reversible cerebral vasoconstriction syndrome"). RESULTS: A total of 102 patients (mean age, 47.2 ± 13.9 years; females, 85 [83.3%]) qualified for the analysis. Thunderclap headache at presentation was reported in 69 (67.6%) patients, and it typically recurred in 42 (60.9%). Compared to reversible cerebral vasoconstriction syndrome cases related to putative etiologic conditions (n = 21 [20.6%]), patients with idiopathic reversible cerebral vasoconstriction syndrome (n = 81 [79.4%]) were significantly older (49.2 ± 13.9 vs. 39.5 ± 11.4 years), had more frequently typical thunderclap headache (77.8% vs. 28.6%) and less frequently neurological complications (epileptic seizures, 11.1% vs. 38.1%; cerebral infarction, 6.1% vs. 33.3%), as well as concomitant reversible brain edema (25.9% vs. 47.6%). CONCLUSIONS: Clinical manifestations and putative etiologies of reversible cerebral vasoconstriction syndrome in our series are slightly different from those observed in previous cohorts. This variability might be partly related to the coexistence of precipitating conditions with a putative etiologic role on disease occurrence.


Assuntos
Vasoespasmo Intracraniano/etiologia , Vasoespasmo Intracraniano/patologia , Adulto , Feminino , Transtornos da Cefaleia Primários/etiologia , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Síndrome
14.
Methods Enzymol ; 615: 423-451, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30638536

RESUMO

STD NMR is a powerful ligand-based tool for screening small molecules and low molecular weight fragments for their interaction with a given macromolecule. Such information is invaluable both in the drug discovery sector and in understanding fundamental biological interactions. Recently, powerful methods have been developed to extract a greater wealth of information from the STD NMR experiment, including ligand binding epitopes, dissociation constant determination, and mapping of binding site properties. Herein we describe these STD NMR experiments, giving practical examples for each approach, and highlight the important parameters and common pitfalls that must be considered for a successful experiment.


Assuntos
Ligantes , Substâncias Macromoleculares/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Proteínas/metabolismo , Sítios de Ligação , Epitopos , Humanos , Naproxeno/metabolismo , Ligação Proteica , Albumina Sérica Humana/metabolismo
15.
Nat Commun ; 9(1): 4283, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327479

RESUMO

The bacterial effector proteins SseK and NleB glycosylate host proteins on arginine residues, leading to reduced NF-κB-dependent responses to infection. Salmonella SseK1 and SseK2 are E. coli NleB1 orthologs that behave as NleB1-like GTs, although they differ in protein substrate specificity. Here we report that these enzymes are retaining glycosyltransferases composed of a helix-loop-helix (HLH) domain, a lid domain, and a catalytic domain. A conserved HEN motif (His-Glu-Asn) in the active site is important for enzyme catalysis and bacterial virulence. We observe differences between SseK1 and SseK2 in interactions with substrates and identify substrate residues that are critical for enzyme recognition. Long Molecular Dynamics simulations suggest that the HLH domain determines substrate specificity and the lid-domain regulates the opening of the active site. Overall, our data suggest a front-face SNi mechanism, explain differences in activities among these effectors, and have implications for future drug development against enteric pathogens.


Assuntos
Arginina/metabolismo , Proteínas de Bactérias/química , Interações Hospedeiro-Patógeno/fisiologia , Acetilglucosamina/metabolismo , Animais , Arginina/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Proteínas de Escherichia coli/química , Feminino , Glicosilação , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Salmonella typhimurium/patogenicidade , Especificidade por Substrato , Fatores de Virulência/química
16.
Chemistry ; 24(67): 17677-17680, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30207403

RESUMO

We have screened small molecule libraries specifically for inhibitors that target WWP2, an E3 ubiquitin ligase associated with tumour outgrowth and spread. Selected hits demonstrated dose-dependent WWP2 inhibition, low micromolar IC50 values, and inhibition of PTEN substrate-specific ubiquitination. Binding to WWP2 was confirmed by ligand-based NMR spectroscopy. Furthermore, we used a combination of STD NMR, the recently developed DEEP-STD NMR approach, and docking calculations, to propose for the first time an NMR-validated 3D molecular model of a WWP2-inhibitor complex. These first generation WWP2 inhibitors provide a molecular framework for informing organic synthetic approaches to improve activity and selectivity.


Assuntos
Inibidores Enzimáticos/química , Bibliotecas de Moléculas Pequenas/química , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Sítios de Ligação , Descoberta de Drogas , Inibidores Enzimáticos/metabolismo , Humanos , Concentração Inibidora 50 , Ligantes , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , PTEN Fosfo-Hidrolase/metabolismo , Estrutura Terciária de Proteína , Bibliotecas de Moléculas Pequenas/metabolismo , Solubilidade , Ubiquitina-Proteína Ligases/metabolismo
18.
Nat Commun ; 8(1): 2196, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259165

RESUMO

Ruminococcus gnavus is a human gut symbiont wherein the ability to degrade mucins is mediated by an intramolecular trans-sialidase (RgNanH). RgNanH comprises a GH33 catalytic domain and a sialic acid-binding carbohydrate-binding module (CBM40). Here we used glycan arrays, STD NMR, X-ray crystallography, mutagenesis and binding assays to determine the structure and function of RgNanH_CBM40 (RgCBM40). RgCBM40 displays the canonical CBM40 ß-sandwich fold and broad specificity towards sialoglycans with millimolar binding affinity towards α2,3- or α2,6-sialyllactose. RgCBM40 binds to mucus produced by goblet cells and to purified mucins, providing direct evidence for a CBM40 as a novel bacterial mucus adhesin. Bioinformatics data show that RgCBM40 canonical type domains are widespread among Firmicutes. Furthermore, binding of R. gnavus ATCC 29149 to intestinal mucus is sialic acid mediated. Together, this study reveals novel features of CBMs which may contribute to the biogeography of symbiotic bacteria in the gut.


Assuntos
Adesinas Bacterianas/química , Glicoproteínas/química , Mucinas/metabolismo , Ácido N-Acetilneuramínico/química , Neuraminidase/química , Ruminococcus/enzimologia , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Animais , Domínio Catalítico/genética , Linhagem Celular , Colo/citologia , Colo/metabolismo , Biologia Computacional , Cristalografia por Raios X , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células Caliciformes/metabolismo , Humanos , Lactose/análogos & derivados , Lactose/química , Lactose/metabolismo , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/genética , Neuraminidase/metabolismo , Ligação Proteica , Especificidade por Substrato , Simbiose
19.
Angew Chem Int Ed Engl ; 56(48): 15289-15293, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28977722

RESUMO

Saturation transfer difference (STD) NMR spectroscopy is extensively used to obtain epitope maps of ligands binding to protein receptors, thereby revealing structural details of the interaction, which is key to direct lead optimization efforts in drug discovery. However, it does not give information about the nature of the amino acids surrounding the ligand in the binding pocket. Herein, we report the development of the novel method differential epitope mapping by STD NMR (DEEP-STD NMR) for identifying the type of protein residues contacting the ligand. The method produces differential epitope maps through 1) differential frequency STD NMR and/or 2) differential solvent (D2 O/H2 O) STD NMR experiments. The two approaches provide different complementary information on the binding pocket. We demonstrate that DEEP-STD NMR can be used to readily obtain pharmacophore information on the protein. Furthermore, if the 3D structure of the protein is known, this information also helps in orienting the ligand in the binding pocket.


Assuntos
Mapeamento de Epitopos , Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Sítios de Ligação , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA